Быстрые и медленные мышечные волокна
Наиболее простым примером отличия типов мышечных волокон является мясо курицы или другой птицы. Грудка и крылья обладают белым цветом и минимальным количеством жира, тогда как окорочка и бедрышки отличаются темно-красным цветом мяса и более высоким содержанием жировой ткани.
Так как курица чаще всего стоит, мускулатура ее ног испытывает постоянную статическую нагрузку — основную работу выполняют медленные мышечные волокна. В противоположность этому, мышцы крыльев используются исключительно для непродолжительных, но энергичных взмахов — нагрузка идет на быстрый тип волокон.
Медленные (красные) волокна
Хотя сами по себе медленные волокна достаточно тонки и слабы, они могут поддерживать физическую нагрузку продолжительное время. Их красный цвет обусловлен наличием молекул кислорода, необходимого для окисления жиров (триглицеридов), служащих для медленных волокон главным источником энергии.
Именно поэтому аэробный тренинг и продолжительное кардио идеальны для похудения — по сути, такие нагрузки вовлекает в работу медленные мышечные волокна и заставляют тело сжигать жировые запасы. Однако главную роль играет суммарная продолжительность нагрузки.
// Читать дальше:
- триглицериды — что это?
- кардио — сколько калорий сжигает?
- максимальное потребление кислорода (VO2 max) — на что влияет?
Быстрые (белые) волокна
Для высокоинтенсивных взрывных нагрузок мышцы требуют быстродоступной энергии. Жир для этих целей не подойдет, поскольку его транспортировка и окисление занимает как минимум несколько минут. Энергия должна находиться в легкодоступной форме как можно ближе к самим мышечным волокнам.
Для взрывных усилий организм использует быстрые мышечные волокна, работающие преимущественно на гликогене (то есть, на запасах углеводов в мышцах), АТФ и креатин фосфате². При этом напомним, что рост мышц и увеличение мускулатуры в результате силовых тренировок во многом обусловлен увеличением энергетических запасов.
// Читать дальше:
- как перегнать жир в мышцы?
- креатин — зачем он нужен?
- как ускорить восстановление?
Диагностика
Пациента с повреждениями осматривает травматолог. С помощью функциональных тестов и пальпации врач ставит предварительный диагноз. Затем направляет пострадавшего на дополнительную диагностику. Самыми популярными методами считают:
- рентгенографию;
- УЗИ мышц;
- МРТ.
После обследования врач составляет план лечения и реабилитации. Назначает мази и препараты, подбирает процедуры и рассказывает, когда и как возобновлять тренировки. При серьезных надрывах травматологи рекомендуют сделать повторное УЗИ или МРТ на 12–15 день лечения, чтобы понять, насколько быстро восстанавливаются поврежденные зоны.
// Типы мышечных волокон
Мышечные волокна — это уникальный тип физиологической структуры, обладающей одновременно как прочностью, так и эластичностью. Они делятся на два вида — быстрые и медленные. Несмотря на то, что обычно волокна переплетены, у профессиональных атлетов один из типов доминирует.
Например, у бегунов-марафонцев и у пловцов наблюдается преимущественно медленный тип мышечных волокон, работающий на свободных жирных кислотах — тогда как у спринтеров и тяжелоатлетов превалирует быстрый тип, требующий гликогена.
По сути, соотношение типов волокон влияет на то, легко ли организм будет выдерживать определенные виды нагрузок — как взрывных силовых, так и монотонных анаэробных. Причем, в результате многолетнего выполнения определенных упражнений структура волокон способна меняться.
// Читать дальше:
- гликоген — что это и где запасается?
- как растут мышцы — простыми словами
- кардио — как именно влияет на сжигание жира?
Генетика и типы телосложения
В конечном итоге, соотношение типов мышечных волокон у конкретного человека определяется как его телосложением, так и регулярно практикуемой физической нагрузкой. У бегунов хорошо развиты красные мышечные волокна, тогда как у прыгунов и спринтеров — белые.
Эктоморфы, худые от природы, обычно не имеют проблем с лишним весом — но им сложно набрать мышцы. Эндоморфы и мезоморфы отличаются хорошими силовыми показателями, однако эндоморф склонен к набору лишнего веса. Кроме этого, мышечные волокна разных типов иначе утилизирую молочную кислоту.
// Читать дальше:
- типы телосложения — как определить свой?
- может ли эктоморф стать мезоморфом?
- эктоморф с лишним весом и животом
Как правильно тренироваться, чтобы развить медленные мышечные волокна?
Давайте теперь выясним, как развить медленные мышечные волокна и как для этого нужно тренироваться? Рекомендации достаточно просты, поэтому их каждый сможет без проблем придерживаться:
- Работайте с легкими весами – в пределах 30-50% от своего максимума.
- Выполняйте все движения максимально медленно: плавный медленный подъем снаряда (2-3 секунды), еще более неспешное опускание (до 5 секунд).
- Добивайтесь ощущения сильного жжения в мышцах при каждом подходе и работайте до отказа.
- Работайте внутри амплитуды, поддерживая мышцу в напряженном состоянии. Например, при подъеме гантелей на бицепс не опускайте их в самый низ и не закидывайте слишком высоко, чтобы мышцы в этих предельных точках не расслаблялись.
- Отдыхайте между подходами мало – в пределах 30-40 секунд.
- Между упражнениями отдыхайте подольше – до 5-6 минут и более, если потребуется. Это нужно для снижения мышечного закисления.
- Количество повторений должно быть большим – 15-20-30, в зависимости от упражнения. Главное не повторения, а ощущение жжения, которого следует добиться!
Как тренировать медленные мышечные волокна вы теперь знаете, а также на сайте есть отдельный материал про тренинг быстрых волокон.
Медленные мышечные волокна
ММВ – это красные волокна мышечной массы. Цвет характеризует повышенная капилляризация мышц для доставки кислорода.
В своем запасе данный тип мышц, имеет повышенное количество миозина и митохондрий.
Миозин задерживает кислород, а митохондрии, являются его проводником. Медленные мышечные волокна имеют наименьший потенциал к росту.
И вот это, такое разное соотношение в человеческом организме быстрых и медленных мышечных волокон и определяет то, насколько человек предрасположен к наращиванию мышечной массы.
В случае, когда быстрых мышечных волокон много, человек отлично набирает мышечную массу, объемы, но он менее вынослив.
Когда преобладают медленные волокна, спортсмен более стойкий, но при этом не может похвастаться выраженной мускулатурой.
Изучение волокон 1 типа
Хотя пока исследований очень мало, отдельные работы показывают, что у медленносокращающихся волокон неплохой потенциал. Например, результаты исследования Митчелла с соавторами (1) следующие: при доведении подхода до отказа тренировка с малой нагрузкой (3 сета с 30% от 1ПМ) вызвала приблизительно такую же гипертрофию, как более интенсивная (3 сета с 80% от 1ПМ). При этом, хотя разница не статистически значимая, высокоинтенсивная нагрузка чуть больше стимулировала волокна 2 типа (15% прибавки против 12%), а низкоинтенсивная – волокна 1 типа (19% прибавки против 14%).
Но уже ясно, что вес на штанге – не единственный фактор роста. И наука начинает подходить к идее, давно понятной интуитивно: волокна 1 типа максимально стимулируются продолжительными подходами с небольшим весом, а волокна 2 типа лучше отзываются на короткие сеты с большими отягощениями.
Большинство исследований проводится на нетренированных участниках, но у спортсменов с большим опытом результаты могут быть иными. Если мы рассмотрим исследования на тренированных людях, то найдем подтверждения этому предположению. Бодибилдеры обычно набирают большой тренировочный объем, работая в среднем числе повторений и накапливая усталость (4), а для пауэрлифтеров (5) и тяжелоатлетов важнее рабочий вес и/или скорость движения. Вполне закономерно, что у бодибилдеров заметно преобладает гипертрофия волокон 1 типа по сравнению с силовиками (2).
Принимая во внимание все эти данные, можно заключить, что тренировки различной интенсивности могут привести к схожей общей гипертрофии (1, 6-8), но будут варьироваться темпы роста разных типов волокон. Однако, как и со многими предметами, окончательного научного вердикта нет: два исследования (с несколько различающимися условиями проведения) показали, что высокоинтенсивные тренировки эффективнее для гипертрофии вне зависимости от типов волокон (9,10)
Но есть нюанс. Исследования, в которых уравнивается объем проделанной работы, показывают преимущества высокой интенсивности для гипертрофии всех типов волокон (10,11). Если же объем не сопоставляется, то тренировки различной интенсивности приводят к схожим результатам
Однако, как и со многими предметами, окончательного научного вердикта нет: два исследования (с несколько различающимися условиями проведения) показали, что высокоинтенсивные тренировки эффективнее для гипертрофии вне зависимости от типов волокон (9,10). Но есть нюанс. Исследования, в которых уравнивается объем проделанной работы, показывают преимущества высокой интенсивности для гипертрофии всех типов волокон (10,11). Если же объем не сопоставляется, то тренировки различной интенсивности приводят к схожим результатам.
Бёрд с соаворами (12) сравнивал увеличение синтеза белка в ответ на тренировки с различными протоколами: работа с 90% от 1ПМ до отказа; работа с 30% от 1ПМ такого же общего объема, как с 90%; работа с 30% до отказа.
Выводы: при работе до отказа уровни синтеза белка были схожими, а тренировка с 30% до отказа вызвала вдвое больший подъем, чем тренировка с 30%, уравненная по объему с 90%.
Разумеется, краткосрочный подъем синтеза белка после отдельной тренировки может не обеспечивать гипертрофии в перспективе, но уже 2 исследования показали, что работа до отказа с различной интенсивностью приводит к сходным результатам (1,6).
Мы все разные
Стараться ли выйти на большие тренировочные веса при малом количестве повторений или же делать упор на средний вес и большое количество повторений? Самое интересное, что нет универсального рецепта.
У кого-то будет прогресс от чисто силовой работы с небольшим количеством повторений. У кого-то, наоборот, силовая тренировка не вызовет отклик к росту мышц и не даст прогресса, а вот упор на увеличенное количество повторений со средним весом даст огромный эффект.
Опытные атлеты за годы тренировок интуитивно находят наиболее подходящую для себя схему
Обратите внимание, что в своих роликах на YouTube такие товарищи в большинстве своем говорят: «У меня нет четко прописанного плана по упражнениям на сегодняшнюю тренировку, я буду делать то, что посчитаю нужным и в таком режиме, который подходит моему телу в текущий момент». Это и звезды бодибилдинга, и увлекающиеся граждане попроще, потратившие годы на работу с отягощениями
Рано или поздно многие интуитивно находят свой тип тренинга, если не ленятся экспериментировать, но зачем терять время, когда можно все сделать намного быстрее и без лишних экспериментов?
Для начала разберемся с мифами касательно универсального тренинга.
Основные причины
Зоны, где мышца переходит в сухожилие, наиболее уязвимые. Надрывы чаще всего появляются в спине, бедрах, предплечьях, икрах и плечах. Брюшные мышцы, шея и грудная клетка травмируются намного реже.
Повреждения мышечных волокон вызывают:
- резкие махи и повороты;
- неудобная тренировочная одежда, ограничивающая подвижность суставов;
- слишком короткая разминка перед тренировкой или ее отсутствие;
- слишком интенсивные нагрузки;
- тренировка в состоянии физического или эмоционального истощения.
К надрывам мышц приводят удары, падения и порезы. Риск серьезных повреждений возрастает, если пациент – пенсионер или человек, который недавно перенес инфекционное заболевание. В пожилом возрасте структура мышечных волокон нарушается, и они становятся более восприимчивыми к механическим повреждениям и растяжениям. Похожие изменения происходят в мягких тканях и во время серьезной болезни.
Механизмы мышечной гипертрофии
Три основных фактора рассматриваются в качестве способствующих гипертрофии, вызванной упражнениями: механическое напряжение, повреждения мышц и метаболический стресс. В зависимости от стимулов, факторы могут работать в тандеме, оказывая синергическое влияние на развитие мышц (61). Коротко рассмотрим эти факторы. Для более глубокого ознакомления с темой можно обратиться к обзорной статье Schoenfeld (61).
Механическое напряжение, по-видимому, наиболее значимый фактор для гипертрофии мышц (18, 33, 34, 73). Предполагают, что механическое напряжение воздействует на целостность скелетной мышцы, вызывая преходящий механохимический молекулярный и клеточный ответ мышечных волокон и клеток- сателлитов (72). Если рассматривать тренировку с отягощениями, механическое напряжение в первую очередь зависит от интенсивности (величины нагрузки) и времени под нагрузкой (продолжительность приложения нагрузки). Оптимальное сочетание этих переменных приводит к максимальному рекрутированию двигательных единиц (ДЕ) и скорости активации, тем самым вызывая усталость широкого спектра ДЕ и, таким образом, большей ответной гипертрофии (59). Локальные повреждения мышц, вызванные тренировкой с отягощениями, также могут рассматриваться как фактор мышечного роста (14, 31). При повреждении мышц возникает воспалительный ответ, включающий увеличение количества нейтрофилов, макрофагов и лимфоцитов. Это приводит к производству миокинов, которые, как полагают, потенцируют высвобождение различных факторов роста, регулирующих пролиферацию и дифференциацию клеток-сателлитов (72, 74). Механозависимый фактор роста (МФР) – разновидность инсулиноподобного фактора роста (ИФР-1), который экспрессируется локально в мышечных волокнах, проявляет особенную чувствительность к повреждениям мышц (5, 18) и, таким образом, может быть напрямую ответственным за увеличение активности клеток-сателлитов, наблюдаемую при травме мышц.
Наконец, существуют исследования, показывающие, что метаболический стресс, вызванный упражнениями, может действовать как мощный стимул гипертрофии (59, 62, 65, 66). Метаболический стресс, возникающий при выполнении упражнений с отягощениями, преимущественно связан с анаэробным гликолизом, который восстанавливает уровень аденозинтрифосфата, что, в свою очередь, приводит к накоплению метаболитов, таких как, лактат, ионы водорода и неорганический фосфат (67, 70). Метаболические изменения, предположительно, способствуют созданию анаболической среды, которая модулируется сочетанием гормональных и других факторов (включая ИФР-1, тестостерон и гормон роста (ГР), клеточную гидратацию, продукцию свободных радикалов и/или активности, связанных с ростом факторов транскрипции) (19, 20, 68). Некоторые исследователи полагают, что низкий рН, связанный с «быстрым» гликолизом, может дополнительно усиливать адаптационную гипертрофию путём стимуляции активности симпатических нервов и увеличения деградации волокон (8).
Что такое метаболизм и на что расходуются калории
Обмен веществ – замысловатый комплекс биохимических и энергетических процессов, который каждый день происходит во всех живых организмах. Главная цель метаболизма – переработать и усвоить питательные вещества, полученные во время еды. Результат – энергия, которая используется для физической активности, умственной деятельности и всех остальных элементов нормальной жизнедеятельности организма. Без нее невозможна жизнь человека – даже когда мы спим, нам нужны калории.
Теперь о том, куда расходуются поглощенные калории:
60-70% калорий тратятся на поддержание общих процессов жизнедеятельности (работу мозга и сердца, дыхание и т.д.); 25-30% калорий расходуется на физическую активность; 10% – на переваривание пищи.
Процент расхода калорий может увеличиваться в результате повышенной физической активности (например, при регулярных занятиях спортом или трудовой деятельности). Все зависит от того, с какой физической нагрузкой связан день каждого отдельного человека. Ведь, к примеру, офисный работник потратит гораздо меньше килокалорий за сутки, чем рабочий завода.
Чтобы лучше понять, на что и в каком количестве тратится энергия ежедневно, разделим население на три большие группы:
Офисные служащие. Считается, что офисные работники потратят за рабочий день всего 550 ккал. При условии, если не будет слишком сильных стрессовых ситуаций. Сотрудники в сфере образования и обслуживания населения. Их работа связана с повышенной подвижностью и общением с людьми. Влияет на потерю калорий и стресс, который неизбежен в таких условиях. Подобный труд требует большего количества энергии – примерно 1000 ккал. Рабочие. Самая энергозатратная категория. Токарям, грузчикам, слесарям и остальным рабочим понадобится не менее 2000 ккал в день. К этой же группе можно отнести и профессиональных спортсменов.
Каждый из представителей той или иной категории расходует разное количество энергии. При этом утром и вечером они потратят приблизительно схожую величину калорий, а днем цифра будет значительно отличаться.
Изучение волокон 1 типа
Хотя пока исследований очень мало, отдельные работы показывают, что у медленносокращающихся волокон неплохой потенциал. Например, результаты исследования Митчелла с соавторами (1) следующие: при доведении подхода до отказа тренировка с малой нагрузкой (3 сета с 30% от 1ПМ) вызвала приблизительно такую же гипертрофию, как более интенсивная (3 сета с 80% от 1ПМ). При этом, хотя разница не статистически значимая, высокоинтенсивная нагрузка чуть больше стимулировала волокна 2 типа (15% прибавки против 12%), а низкоинтенсивная – волокна 1 типа (19% прибавки против 14%).
Но уже ясно, что вес на штанге – не единственный фактор роста. И наука начинает подходить к идее, давно понятной интуитивно: волокна 1 типа максимально стимулируются продолжительными подходами с небольшим весом, а волокна 2 типа лучше отзываются на короткие сеты с большими отягощениями.
Большинство исследований проводится на нетренированных участниках, но у спортсменов с большим опытом результаты могут быть иными. Если мы рассмотрим исследования на тренированных людях, то найдем подтверждения этому предположению. Бодибилдеры обычно набирают большой тренировочный объем, работая в среднем числе повторений и накапливая усталость (4), а для пауэрлифтеров (5) и тяжелоатлетов важнее рабочий вес и/или скорость движения. Вполне закономерно, что у бодибилдеров заметно преобладает гипертрофия волокон 1 типа по сравнению с силовиками (2).
Принимая во внимание все эти данные, можно заключить, что тренировки различной интенсивности могут привести к схожей общей гипертрофии (1, 6-8), но будут варьироваться темпы роста разных типов волокон. Однако, как и со многими предметами, окончательного научного вердикта нет: два исследования (с несколько различающимися условиями проведения) показали, что высокоинтенсивные тренировки эффективнее для гипертрофии вне зависимости от типов волокон (9,10)
Но есть нюанс
Исследования, в которых уравнивается объем проделанной работы, показывают преимущества высокой интенсивности для гипертрофии всех типов волокон (10,11). Если же объем не сопоставляется, то тренировки различной интенсивности приводят к схожим результатам
Но есть нюанс. Исследования, в которых уравнивается объем проделанной работы, показывают преимущества высокой интенсивности для гипертрофии всех типов волокон (10,11). Если же объем не сопоставляется, то тренировки различной интенсивности приводят к схожим результатам
Однако, как и со многими предметами, окончательного научного вердикта нет: два исследования (с несколько различающимися условиями проведения) показали, что высокоинтенсивные тренировки эффективнее для гипертрофии вне зависимости от типов волокон (9,10). Но есть нюанс. Исследования, в которых уравнивается объем проделанной работы, показывают преимущества высокой интенсивности для гипертрофии всех типов волокон (10,11). Если же объем не сопоставляется, то тренировки различной интенсивности приводят к схожим результатам.
Бёрд с соаворами (12) сравнивал увеличение синтеза белка в ответ на тренировки с различными протоколами: работа с 90% от 1ПМ до отказа; работа с 30% от 1ПМ такого же общего объема, как с 90%; работа с 30% до отказа.
Выводы: при работе до отказа уровни синтеза белка были схожими, а тренировка с 30% до отказа вызвала вдвое больший подъем, чем тренировка с 30%, уравненная по объему с 90%.
Разумеется, краткосрочный подъем синтеза белка после отдельной тренировки может не обеспечивать гипертрофии в перспективе, но уже 2 исследования показали, что работа до отказа с различной интенсивностью приводит к сходным результатам (1,6).
Рост и атрофия мышц. Общепринятая модель
Строго говоря, скелетные мышцы состоят не из клеток, а из мышечных волокон, каждое из которых представляет собой синцитий, то есть результат слияния нескольких клеток. Слившиеся клетки объединили цитоплазму, но не ядра, поэтому мышечное волокно содержит несколько ядер (миоядер, как их иногда называют), равномерно распределенных по его длине, и каждое ядро окружено рибосомами, в которых происходит синтез белка. Многоядерность мышечному волокну необходима. Дело в том, что оно гораздо крупнее других клеток, его длина обычно равна длине скелетной мышцы и у взрослого человека может достигать 20 см при толщине до 100 мкм. Рост мышцы происходит за счет синтеза белка. Чем активнее она растет, тем больше белка требует, причем нужны ей не только актин с миозином. Значительная часть синтетической активности уходит на образование рибосом, для чего необходимо несколько сотен разных белков. Любые заминки с белковым синтезом затормозят гипертрофию мышцы. Очевидно, одно ядро просто не в состоянии обеспечить большое мышечное волокно достаточным количеством РНК, а если бы и смогло, белки потом пришлось бы перемещать из одного центра на огромные по клеточным меркам расстояния, для чего нужна развитая транспортная система. В такой ситуации рациональнее иметь несколько ядер и центров белкового синтеза.
В мышечном волокне происходит не только синтез белка, но и его распад (протеолиз). От соотношения этих процессов зависит, растет мышца или атрофируется. Чем активнее растет мышца, тем больше ядер должно содержать одно волокно (рис. 1). Необходимое количество ядер мышечное волокно добирает, присоединяя сателлитные клетки. Эти недифференцированные клетки лежат прямо на мышечном волокне. В случае необходимости они дифференцируются, давая начало новым мышечным волокнам, или сливаются с уже существующими, увеличивая количество ядер в нем.
Рисунок 1. Синтез белка зависит от количества миоядер и их активности. Баланс между синтезом и деградацией белка определяют размер мышечного волокна.
Согласно традиционным представлениям, при мышечной атрофии белковый синтез ослабевает, протеолиз набирает силу, и мышечные волокна уменьшаются в размерах, при этом происходит избирательный апоптоз лишних миоядер внутри живого волокна. Их количество регулируется таким образом, чтобы объем цитоплазмы, приходящейся на одно ядро, был всегда постоянным (рис. 2). Согласно этой модели, выросшее, а потом атрофировавшееся мышечное волокно неотличимо от волокна, которое никогда не тренировали. Такая модель не предполагает наличия мышечной памяти.
Рисунок 2. Растущее мышечное волокно получает дополнительные миоядра из сателлитных клеток, при атрофии оно теряет ядра в результате избирательного апоптоза. Модель не предполагает наличия мышечной памяти.
Тише едешь – дальше будешь?
Итак, хотя волокна 2 типа все же растут лучше волокон 1 типа, неужели вы откажетесь от стимуляции последних и дополнительной массы?
Вывод простой: для максимально эффективного роста мышц есть смысл растить все имеющиеся типы мышечных волокон – и те, что растут хорошо, много и от интенсивной нагрузки (“быстрые” волокна) и те, что растут от продолжительной нагрузки и малого веса (“медленные”).
Перевод: Алексей Republicommando
Упомянутые в тексте научные исследования:
1. Mitchell, C. J. et al. Resistance exercise load does not determine training-mediated hypertrophic gains in young men. J Appl Physiol 113, 71-77 (2012).
2. Fry, A. C. The role of resistance exercise intensity on muscle fibre adaptations. Sports Med 34, 663-679 (2004).
3. Wernbom, M., Augustsson, J. & Thomeé, R. The influence of frequency, intensity, volume and mode of strength training on whole muscle cross-sectional area in humans. Sports Med 37, 225-264 (2007).
4. Hackett, D. A., Johnson, N. A. & Chow, C.-M. Training Practices and Ergogenic Aids used by Male Bodybuilders. J Strength Cond Res (2012). doi:10.1519/JSC.0b013e318271272a
5. Swinton, P. A. et al. Contemporary Training Practices in Elite British Powerlifters: Survey Results From an International Competition. J Strength Cond Res 23, 380-384 (2009).
6. Ogasawara, R., Loenneke, J. P., Thiebaud, R. S. & Abe, T. Low-load bench press training to fatigue results in muscle hypertrophy similar to high-load bench press training. International Journal of Clinical Medicine 4, 114-121 (2013).
7. Léger, B. et al. Akt signalling through GSK-3beta, mTOR and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy. J Physiol (Lond) 576, 923-933 (2006).
8. Lamon, S., Wallace, M. A., Léger, B. & Russell, A. P. Regulation of STARS and its downstream targets suggest a novel pathway involved in human skeletal muscle hypertrophy and atrophy. J Physiol (Lond) 587, 1795-1803 (2009).
9. Schuenke, M. D. et al. Early-phase muscular adaptations in response to slow-speed versus traditional resistance-training regimens. Eur J Appl Physiol 112, 3585-3595 (2012).
10. Campos, G. E. R. et al. Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. Eur J Appl Physiol 88, 50-60 (2002).
11. Holm, L. et al. Changes in muscle size and MHC composition in response to resistance exercise with heavy and light loading intensity. J Appl Physiol 105, 1454-1461 (2008).
12. Burd, N. A. et al. Low-load high volume resistance exercise stimulates muscle protein synthesis more than high-load low volume resistance exercise in young men. PLoS ONE 5, e12033 (2010).
13. Aagaard, P. et al. A mechanism for increased contractile strength of human pennate muscle in response to strength training: changes in muscle architecture. J Physiol (Lond) 534, 613-623 (2001).
14. Charette, S. L. et al. Muscle hypertrophy response to resistance training in older women. J Appl Physiol 70, 1912-1916 (1991).
15. Harber, M. P., Fry, A. C., Rubin, M. R., Smith, J. C. & Weiss, L. W. Skeletal muscle and hormonal adaptations to circuit weight training in untrained men. Scand J Med Sci Sports 14, 176-185 (2004).
16. Kosek, D. J., Kim, J.-S., Petrella, J. K., Cross, J. M. & Bamman, M. M. Efficacy of 3 days/wk resistance training on myofiber hypertrophy and myogenic mechanisms in young vs. older adults. J Appl Physiol 101, 531-544 (2006).
17. Staron, R. S. et al. Strength and skeletal muscle adaptations in heavy-resistance-trained women after detraining and retraining. J Appl Physiol 70, 631-640 (1991).
18. Henneman, E., Somjen, G. & Carpenter, D. O. Excitability and inhibitability of motoneurons of different sizes. J. Neurophysiol. 28, 599-620 (1965).
19. Henneman, E., Somjen, G. & Carpenter, D. O. FUNCTIONAL SIGNIFICANCE OF CELL SIZE IN SPINAL MOTONEURONS. J. Neurophysiol. 28, 560-580 (1965).
20. Schoenfeld, B. J. Potential Mechanisms for a Role of Metabolic Stress in Hypertrophic Adaptations to Resistance Training. Sports Med (2013). doi:10.1007/s40279-013-0017-1
21. Adam, A. & De Luca, C. J. Recruitment order of motor units in human vastus lateralis muscle is maintained during fatiguing contractions. J. Neurophysiol. 90, 2919-2927 (2003).
22. Simoneau, J. A. & Bouchard, C. Genetic determinism of fiber type proportion in human skeletal muscle. FASEB J 9, 1091-1095 (1995)
23. Tirrell, T. F. et al. Human skeletal muscle biochemical diversity. J. Exp. Biol. 215, 2551-2559 (2012).
24. Johnson, M. A., Polgar, J., Weightman, D. & Appleton, D. Data on the distribution of fibre types in thirty-six human muscles. An autopsy study. J. Neurol. Sci. 18, 111-129 (1973).
Быстро сокращающиеся мышечные волокна ( II-тип)
1. Быстро сокращающиеся волокна делятся на 2 группы:
- быстро сокращающиеся IIa — быстрые оксидативные (используют кислород, чтобы преобразовать гликоген в АТФ);
- быстро сокращающиеся IIb — быстрые гликолитические (используют АТФ, который хранится в мышечных клетках в виде гликогена, чтобы вырабатывать энергию).
2. Быстро сокращающиеся волокна имеют высокий порог активации, поэтому включаются в работу только тогда, когда потребность в силе будет больше, чем могут обеспечить медленно сокращающиеся волокна.
3. Быстрым волокнам требуется меньше времени, чтобы достичь пиковой силы. К том же они могут генерировать больше силы, чем медленные волокна.
4. Хотя они генерируют больше силы, но и быстрее устают.
5. Мышцы, отвечающие за создание движения, в большей степени состоят из быстрых волокон.
6. Тренировка для силы и прочности увеличивает количество быстро сокращающихся мышечных волокон, задействованных в конкретном движении.
7. Быстро сокращающиеся волокна отвечают за размер и выразительность мышц.
8. Быстрый тип волокон называется «белыми волокнами», так как плохо снабжается кровью и не имеет такого насыщенного цвета, как второй тип.
Как видно из вышеперечисленного, характеристики быстро сокращающихся волокон требуют тренировок на силу и прочность, а также на развитие взрывной силы. Если вы хотите по максимуму использовать быстрые волокна в своих тренировках для повышения силы и прочности, вот несколько конкретных методов, которые в этом помогут.
Методы тренировки для быстро сокращающихся волокон:
— Тренировки с тяжелым весом заставляют мышцы активировать больше мышечных волокон. Чем тяжелее вес, тем больше быстро сокращающихся волокон будет вовлечено в работу.
— Выполнение взрывных движений, а также упражнений на прочность с использованием штанги, гирь или гантель, обеспечит работу большего количества мышечных волокон.
— Быстро сокращающиеся волокна быстро устают. Поэтому надо сосредоточиться на использовании тяжелого веса, но только до определенного числа повторений (например, от двух до шести), чтобы достигнуть максимального эффекта.
— Поскольку быстрые волокна быстро истощают энергию, во время тренировок требуются более длительные периоды отдыха, чтобы мышцы-двигатели имели достаточно времени восстановиться и пополнить запасы АТФ. Поэтому после каждого взрывного или силового упражнения стоит делать паузы продолжительностью в 60-90 секунд.
Генетика определяет количество каждого из типов мышечных волокон в нашем теле. Тем не менее, понимание того, какой именно, быстро- или медленно сокращающийся, тип является доминирующим, поможет выстроить правильную программу тренировок. Поэтому, если обнаружите, что, как правило, придерживаетесь тренировок на выносливость, и они относительно легко вам поддаются, вы, вероятно, являетесь обладателем большого количества медленно сокращающихся волокон. И наоборот, если предпочитаете физическую нагрузку, которая предусматривает короткие взрывные движения или тренировки с большим весом, — в вашем теле доминирует быстро сокращающийся тип волокон.
Программа упражнений, которая применяет правильные стратегии тренировок для ваших мышечных волокон, поможет максимизировать эффективность нагрузок.опубликовано econet.ru
Таблица характеристик типов мышечных волокон
Характеристики | Медленно сокращающиеся | Быстро сокращающиеся IIa | Быстро сокращающиеся IIb |
Генерирование силы | Низкий уровень | Средний уровень | Высокий уровень |
Скорость сокращения | Низкий уровень | Высокий уровень | Высокий уровень |
Уставаемость | Низкий уровень | Средний уровень | Высокий уровень |
Гликолитическая способность | Низкий уровень | Высокий уровень | Высокий уровень |
Оксидативная способность | Высокий уровень | Средний уровень | Низкий уровень |
Снабжаемость кровью | Высокий уровень | Средний уровень | Низкий уровень |
Митохондриальная плотность | Высокий уровень | Средний уровень | Низкий уровень |
Выносливость | Высокий уровень | Средний уровень | Низкий уровень |
Присоединяйтесь к нам в , , Одноклассниках